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Abstract. The stabilities of different kinds of ordered structure in complex perovskites have
been studied by the eight-point cluster variation method (CVM). The grand potentials of these
structures have been calculated and compared with that of the disordered state. It has been
proved that the1

2{111}-type ordered structure will be stable in the system when the nearest-
neighbour interaction is much stronger than other longer-distance interactions. The1

2{110}- and
1
2{100}-type ordered structures result from the next-nearest- and the third-neighbour interactions
respectively. The grand potentials of the1

2{111}- and 1
2{100}-type ordered structures reach

minima at the compositionx = 0.5, whereas the grand potential of one of the1
2{110}-type

ordered structures reaches its minima at aroundx = 0.25 andx = 0.75. The formation of
different kinds of ordered structure in real material systems has been discussed.

1. Introduction

Materials with the perovskite structure ABO3, such as BaTiO3 and PbTiO3, represent an
important family of ferroelectrics. When two or more than two kinds of cation occupy
the A-site or B-site lattice, the complex perovskite structure is formed. Some materials
with this kind of structure manifest the properties of relaxor ferroelectrics, which are quite
different from those of the normal ferroelectrics [1]. The relaxor characteristics were
originally attributed to the chemical inhomogeneity arising from the cation disordering,
i.e. the crystal structures of relaxors were considered to be disordered on the basis of
the early microscopic observation [1, 2]. With the development of electron microscope
techniques, many compounds previously accepted as disordered were found to be ordered
on the nanoscale [3–5]. It has been realized that the special relaxor properties are closely
related to the existence of nanoscale-ordered microregions in the complex perovskites [6–
10]. The structures of these ordered microregions and the origins of their formation have
caused a lot of interest.

By using the high-resolution electron microscope (HREM) in conjunction with selected-
area electron diffraction, Krauseet al [3] found that there existed 2–5 nm superlattice
microregions in Pb(Mg1/3Nb2/3)O3 (PMN) in which Mg2+ and Nb5+ were ordered in
alternating {111} planes with the 1:1 composition. Such a nonstoichiometric structure
was later confirmed by Jie Chenet al [5]. This 1

2{111}-type ordering (figure 1(a)) is
most commonly observed in complex perovskites. Meanwhile, other kinds of ordered
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Figure 1. Ordered structures observed in complex perovskites together with the disordered
structure. (a) The1

2{111}-type ordered structure. (b) The12{110}-type-I ordered structure.
(c) The 1

2{110}-type-II ordered structure. (d) The12{100}-type ordered structure. (e) The
disordered structure.

structure have also been reported. Randallet al [11] observed the1
2{110} superlattice

reflections in PMN, Pb(Sc1/2Ta1/2)O3 (PST), (PbLa)(ZrTi)O3 (PLZT), (Ba1−xPbx)TiO3,
etc, and associated the superstructure with the ordering of Pb2+ and lead-site vacancies
(VPb2+ ). Recently, the lattice image of this kind of superstructure in PLZT had been shown
via HREM [12]. VPb2+ and La3+ are assumed to occupy the corner and the body-centred
positions (figure 1(b)). What is more interesting is that the1

2{111}, 1
2{110} and 1

2{100}
superlattice reflections were found to exist simultaneously in(PbCa)TiO3 [13, 14]. King
and co-workers proposed that only the1

2{111} reflections result from the chemical ordering
of Pb2+ and Ca2+ while the other two are due to electrical ordering caused by the atomic
shuffling. Most recently, Fei Fang and Xiaowen Zhang [15] postulated, on the basis of an
HREM study, that the three types of superlattice reflection were all of chemical ordering
origin (figure 1(a), 1(c), 1(d)).

By using the probability wave theory of the atomic configuration (PWAC), Binglin Gu
et al [16] studied the ground-state structures in complex perovskites theoretically. Seven
kinds of ground-state ordered structure have been predicted, including the ordered structures
observed in experiments (figure 1(a)–1(d)). This means that one of these structures will have
the lowest energy atT = 0 K under the proper interaction conditions and is possible to
observe in experiments. However, since the entropy is not considered in the PWAC theory, it
remains unclear how different kinds of ordered structure are formed in complex perovskites
with the decrease of temperature. In this contribution, we use the cluster variation method
(CVM) [17] to investigate the stability of various ordered structures in complex perovskites.
The grand potentials of the ordered structures together with the disordered structure are
calculated and compared in order to determine the stable structure with the lowest energy.
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The influences of effective ionic interactions on the formation of different kinds of ordered
structure have been discussed.

2. The method

The A site and B site in ABO3 form simple cubic lattices. We focus our attention on the
site which more than one kind of cation occupies. The influences of the other site and
the O site are included in the effective-interaction parameters. Thus the order–disorder
transition in (A′

xA′′
1−x)BO3 and A(B′

xB′′
1−x)O3 complex perovskites is modelled as one

problem, i.e. the order–disorder phase transition of a two-component system C′
xC′′

1−x on
a sc Bravais lattice. In order to study the ordered structures shown in figures 1(a)–1(d),
an eight-point basic cluster (ijklmntq) is chosen (figure 1(e)). It can be seen that when
C′ and C′′ occupy the eight points randomly, the system is in the disordered state. When
the occupation probabilities ofi, k, m, t and j, l, n, q are identical respectively, the system
is in the 1

2{111}-type ordered structure. When the occupation probabilities ofi and n are
equal while the other points are equivalent, the structure of figure 1(b) is formed. When
the occupation probabilities ofi, k, n, q and j, l, m, t are identical respectively, we get
the ordered structure shown in figure 1(c). When the occupation probabilities ofi, j, k, l
and m, n, t, qare identical respectively, the system is in a1

2{100}-type ordered structure.
Therefore the occupation probabilities of the eight-point cluster can describe all of the
structures shown in figure 1. Notice that the two ordered structures shown in figures 1(b)
and 1(c) both present12{110} superlattice reflections. We call them the1

2{110}-type-I and
1
2{110}-type-II ordered structures, respectively. According to the PWAC theory, these two
kinds of structure are degenerate in energy in the ground state [16]. We will show in the
following that the degeneracy is broken by considering entropy atT 6= 0 K. The grand
potentials are different, so the structures may be formed in different systems.

DefineWijklmntq as the eight-point cluster occupation probability, wherei, j, . . . , q are
equal to 1 or−1, according to whether or not the point is occupied by C′ or C′′ ions. Sijkl ,
Sijtq , Sjknt , Sklmn, Silmq , Smntq are the four-point subcluster occupation probabilities;Xij ,
Xil , . . ., Xtq are the pair occupation probabilities;Pi , Pj , . . ., Pq are the point occupation
probabilities. These satisfy the self-consistent relations

Sijkl =
∑
mntq

Wijklmntq , . . . Xij =
∑
kl

Sijkl, . . . Pi =
∑

j

Xij , . . .. (1)

The system’s grand potential is written approximately in terms of the above occupation
probabilities; the equilibrium properties of the system are then determined by minimizing
the energy. The iteration equation without any limitation on the symmetry of the eight-point
cluster has been obtained by such a process [18]:

Wijklmntq = exp(λ/kBT ) exp(−Eijklmntq/kBT ) exp(µaijklmntq/kBT )

×(PiPjPkPlPmPnPtPq)
1/8

×(XijXilXiqXjkXjtXklXknXlmXmnXmqXntXtq)
−1/4

×(SijklSij tqSjkntSklmnSilmqSmntq)
1/2 (2)

where Eijklmntq represents the interaction energy of a eight-point cluster made up of
i, j, . . . , q species:

Eijklmntq = 1

4
J1(ij + il + iq + jk + j t + kl + kn + lm + mn + mq + nt + tq)

+1

2
J2(ik + im + it + j l + jn + jq + km + kt + ln + lq + mt + nq)
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+J3(in + jm + kq + lt) (3)

where J1, J2, J3 are the nearest-, next-nearest- and third-neighbour effective-interaction
parameters. In the following calculation,J1 is included in the reduced temperaturekBT /J1

and two other parameters are introduced:u = J2/J1 and v = J3/J1. They represent the
relative strength of the next-nearest- and third-neighbour interactions with respect to the
nearest-neighbour interaction. Interactions over longer distances than the third-neighbour
distance have been neglected.aijklmntq is the number of C′ ions in the eight-point cluster,
µ is the chemical potential, andλ is the Lagrange multiplier introduced in the minimization
procedure for the energy. It can be solved for via the normalization condition:

exp

( −λ

kBT

)
=

∑
ijklmntq

exp(−Eijklmntq/kBT ) exp(µaijklmntq/kBT )

×(PiPjPkPlPmPnPtPq)
1/8

×(XijXilXiqXjkXjtXklXknXlmXmnXmqXntXtq)
−1/4

×(SijklSij tqSjkntSklmnSilmqSmntq)
1/2. (4)

The grand potential of the system is [17]

G = Nλ (5)

whereN is the number of lattice points in the system. The composition of C′ ions in the
system is

x = 1

8
(Pi(1) + Pj (1) + · · · + Pq(1)). (6)

In principle, given the reduced temperature and interaction parameters, the stable structure
with the lowest energy could be determined from equations (1)–(6). However, since they are
deduced without any restriction on the occupation probabilities [18], some uncertainties exist
in the calculation. For example, there is more than one kind of occupation configuration
of the eight-point cluster corresponding to one kind of ordered structure, and a complex
and ambiguous result will be obtained by the iteration. Furthermore, if we do not make
any prior assumption regarding the symmetry of the structure, the choice of initial values
has great uncertainty. The iteration will probably not stop at the minimum, and may stop
at other extrema or saddle-points. Therefore in order to obtain clear information from
the CVM calculation, restriction conditions on the symmetry must be imposed upon the
iteration equation. This means that we first find out the minimum point under the restricted
conditions, then determine the stable structure with the lowest energy by comparing the
minima. In the disordered structure, we have

Pi = Pj = · · · = Pq Xij = Xil = · · · = Xtq Sijkl = Sijtq = · · · = Smntq . (7)

On substituting the above symmetry conditions into equation (2), a simplified iteration
equation is obtained, via which the occupation probabilities can be calculated for the
corresponding structure. The grand potential and composition can be subsequently obtained
using equation (5) and equation (6). It is the extreme point of the system’s free energy
under the restricted condition of equation (7). Similarly, the grand potential of the ordered
structures can be calculated. The symmetry conditions are:

(i) for the 1
2{111}-type ordered structure:{

Pi = Pk = Pm = Pt

Pj = Pl = Pn = Pq

Xij = Xil = · · · = Xtq Sijkl = Sijtq = · · · = Smntq

(8)
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(ii) for the 1
2{110}-type-I ordered structure:{

Pi = Pj = Pl = Pm = Pn = Pt

Pk = Pq{
Xij = Xil = Xjt = Xlm = Xmn = Xnt

Xiq = Xjk = Xlk = Xnk = Xmq = Xtq

Sijkl = Sijtq = · · · = Smntq

(9)

(iii) for the 1
2{110}-type-II ordered structure:{

Pi = Pk = Pn = Pq

Pj = Pl = Pm = Pt Xiq = Xkn

Xjt = Xlm

Xij = Xil = Xjk = Xkl = Xmn = Xmq = Xnt = Xtq{
Sijkl = Smntq

Sij tq = Sjknt = Sklmn = Silmq

(10)

(iv) for the 1
2{100}-type ordered structure:{

Pi = Pj = Pk = Pl

Pm = Pn = Pt = Pq Xij = Xil = Xjk = Xkl

Xmn = Xmq = Xnt = Xtq

Xiq = Xjt = Xkn = Xlm

Sijtq = Sjknt = Sklmn = Smntq .

(11)

Comparing the grand potentials of the above five kinds of structure, the minimum point
of the system’s free energy is determined. Then it can be made clear which is the stable
structure actually existing in the material.

The order parameterM is defined as

M = |P − P ′| (12)

whereP andP ′ represent the occupation probabilities of C′ cations on the two superlattices
in the ordered structures. It reflects the degree of ordering of the corresponding ordered
structure. WhenM = 1, the system is in a completely ordered state, whereasM = 0
corresponds to the disordered state.

3. Results

The grand potentials of the structures shown in figure 1 are calculated under various
effective-interaction conditions. First we consider three typical cases. For(u, v) = (0, 0),
the system is studied under the nearest-neighbour approximation. The difference between the
grand potentials of the disordered and ordered symmetry at different reduced temperatures
is depicted in figure 2. The result shows that the energy of the1

2{110}- and 1
2{100}-type

ordered structures remains equal to that of the disordered structure, while the energy of
the 1

2{111}-type ordered structure becomes lower in a certain range of chemical potential
when the temperature is lowered to some extent. The order parameterM of the 1

2{111}-type
ordered structure begins to have nontrivial values when the grand potential becomes lower
(figure 3). At the same time, the order parameters of the1

2{110}- and 1
2{100}-type ordered



1496 Hong Gui et al

Figure 2. The difference be-
tween the grand potentials of the
disordered and ordered symmetry
at kBT /J1 = 4.0 and 4.3 when
(u, v) = (0, 0). The energy of the
1
2{110}- and 1

2{100}-type ordered
structures remains equal to that of
the disordered structure, while the
energy of the1

2{111}-type ordered
structure becomes lower in a certain
range of the chemical potential and
temperature.

Figure 3. A diagram of the order parameter
M of the 1

2{111}-type ordered structure versus
the chemical potential atkBT /J1 = 4.0 and
4.3 when(u, v) = (0, 0).

structures remain very small (< 10−5) over the whole calculation range of the chemical
potential and reduced temperature. This shows that when the nearest-neighbour interaction
is much stronger than other longer-distance interactions, the1

2{111}-type ordered structure
is the state of minimum energy in a certain range of temperature and composition.

Next we take the interaction parameters(u, v) = (1, 0) to study the cases under the
next-nearest-neighbour approximation. A diagram showing the grand potential difference
is given in figure 4. In this case, the grand potentials of the1

2{111}-type and1
2{100}-type

ordered structures remain equal to that of the disordered structure, while the energy of the
1
2{110}-type ordered structure becomes lower. The solid lines represent the grand potential
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Figure 4. The difference between the grand potentials of the disordered and ordered symmetry
at kBT /J1 = 3.0 and 3.5 when(u, v) = (1, 0). The energy of the1

2{111}- and 1
2{100}-type

ordered structures remains equal to that of the disordered structure, while the energy of the
1
2{110}-type ordered structure becomes lower in a certain range of the chemical potential and
temperature. The solid and dashed lines correspond to the1

2{110}-type-I and 1
2{110}-type-II

ordered structures respectively.

Figure 5. A diagram of the order parameter
M of the 1

2{110}-type-I ordered structure
versus the compositionx at kBT /J1 = 3.0
and 3.5 when(u, v) = (1, 0).

difference between the disordered structure and the1
2{110}-type-I ordered structure. The

two wells symmetrical aboutµ = 0 are obtained by iterations starting from different initial
values which are symmetrical aboutx = 0.5. They correspond to the two kinds of1

2{110}-
type-I ordered structures with C′ and C′′ ions exchanged. When the crystal is completely
ordered, the compositionsx of these two kinds of structure are 0.25 and 0.75 respectively.
For clarity, we converted thex-axis from the chemical potential to the composition via
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equation (6) when giving the diagram of the order parameterM and found thatM reaches
maxima at aroundx = 0.25 andx = 0.75 corresponding to the grand potential’s minimum
(figure 5). The dashed lines in figure 4 represent the grand potential difference between
the disordered structure and the1

2{110}-type-II ordered structure. It can be seen that the
grand potential of the12{110}-type-II ordered structure reaches a minimum atµ = 0 which
corresponds tox = 0.5.

Figure 6. The difference between the
grand potentials of disordered and ordered
symmetry atkBT /J1 = 4.0 and 6.0 when
(u, v) = (1, 1). The energy of the1

2{111}-
and 1

2{110}-type ordered structures remains
equal to that of the disordered structure,
while the energy of the1

2{100}-type ordered
structure becomes lower in a certain range of
the chemical potential and temperature.

When the interaction parameters are taken to be(u, v) = (1, 1), the grand potential
difference diagram is as shown in figure 6. Now the grand potentials of the1

2{111}- and
1
2{110}-type ordered structures remain equal to that of the disordered structure, while the
energy of the1

2{100}-type ordered structure becomes lower. The variation of the order
parameterM as a function of the chemical potential in the1

2{110}-type-II and the1
2{100}-

type ordered structures is similar to that in the1
2{111}- type ordered structure (figure 3), so

the diagrams are no longer given here.
The above calculations show that in the three typical cases, i.e.(u, v) = (0, 0), (1, 0) and

(1, 1), the stable ordered structures in the system within a certain range of temperature and
composition should be of the12{111}-, 1

2{110}- and 1
2{100}-type structures, respectively.

Thus it is interesting to investigate the cases where the effective-interaction parameters
change as variables. First, letu vary from 0 → 1 while v = 0; the maximum values of
the order parameter in the12{111}- and 1

2{110}-type ordered structures as functions ofu at
one reduced temperature are shown in figure 7. The order parameter of the1

2{100}-type
ordered structure is neglected since it takes trivial values under these interaction conditions.
The symbols+ and M representMmax in the 1

2{110}-type-I and 1
2{110}-type-II ordered

structures respectively. It can be seen that theMmax for these two kinds of structure
vary in almost the same manner; hence they are no longer specified in the following.
Figure 7 shows thatMmax for the 1

2{111}-type ordered structure decreases sharply as the
value of u increases, whereasMmax for the 1

2{110}-type ordered structure begins to be
nontrivial atu = 0.64 and then increases rapidly until reaching a saturated value whenu is
approaching unity. When 0.13 < u < 0.64 atkBT /J1 = 3.0, the order parameters of both
kinds of structure remain trivial, implying that the next-neighbour interaction is sufficient
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Figure 7. Mmax of the 1
2{111}-type (dashed) and12{110}-type (solid) ordered structures as

functions ofu when(u, v) = (u, 0) at kBT /J1 = 3.0. Symbols+ andM representMmax in the
1
2{110}-type-I and 1

2{110}-type-II ordered structures respectively.

Figure 8. Mmax of the 1
2{110}-type (dashed)

and 1
2{100}-type (solid) ordered structures

as functions ofv when (u, v) = (1, v) at
kBT /J1 = 2.0, 3.0 and 4.0 (marked near the
corresponding curves).

to destroy the1
2{111}-type ordering but is not strong enough to sustain the1

2{110}-type
ordered structure as yet. The stable structure under this interaction condition is disordered
at the corresponding temperature. An ordered structure will be formed ultimately with
the decreasing of temperature. The boundary point between the1

2{111}- and 1
2{110}-type

ordered structures atT = 0 K is u0 = 0.25 (see figure 3 in [16]). This means that when
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the temperature is lowered, the range ofu-values corresponding to the disordering shrinks
until in the ground state, the12{111}-type ordered structure will have the lowest energy at
u < 0.25 and the1

2{110}-type ordered structure will have the lowest energy whenu > 0.25.
When u = 0.25, the two kinds of ordered structure are degenerate in energy. In figure 8
such a tendency is demonstrated more clearly. Whenu = 1 andv is varied from 0→ 1,
Mmax for the 1

2{110}-type ordered structure decreases with the increase ofv, whereasMmax

for the 1
2{100}-type ordered structure increases. The range ofv-values corresponding the

disordering dwindles, approaching the boundary point between the1
2{110}- and the1

2{100}-
type ordered structures in the ground statev0 = 0.25 (see figure 3 in [16]).

4. Discussion

Based on the above CVM calculations, it can be seen that the nearest-neighbour interaction
favours the formation of the12{111}-type ordered structure, while the12{110}- and 1

2{100}-
type ordered structures result from the next-nearest- and third-neighbour interactions
respectively. Since most complex perovskites have the dielectric properties of normal
ferroelectrics or relaxors, the dielectric constants are very high (103–104). This means
that the screening effect in the crystal is so strong that the nearest-neighbour approximation
is valid in most complex perovskites. This may be why the1

2{111}-type ordered structure
is most commonly observed in this kind of material. Furthermore, when the1

2{111}-type
order–disorder phase transition takes place, the grand potential reaches a minimum at the
compositionx = 0.5 (figure 2). Therefore although the composition in some complex
perovskites deviates from 0.5, a nonstoichiometric ordered structure is formed in order to
achieve the lowest free energy. The nonstoichiometric ordering causes the charge imbalance
in the ordered domains and the surrounding disordered matrix; hence the static electric
energy increases with the ordered domains. When the decrease of the free energy is
compensated by the increase of the static electric energy, the growth of the ordered domains
stops. So the space charge caused by the nonstoichiometric ordering is the main reason for
the formation of nanoscale-ordered microregions in systems like PMN [19].

When ordering of Pb2+ and VPb2+ takes place on an A-site lattice, the charge imbalance
may play a more important role in determining the crystal structure. The1

2{110}-type-I
ordered structure is preferred because the system has the smallest charge imbalance at the
minimum point of the grand potential with VPb2+ (or VPb2+ + La3+ in PLZT) occupying the
corner and the body-centred positions (figures 4 and 5). When the other kinds of ordered
structure are formed, the grand potentials reach minima atx = 0.5. This will lead to a
tremendous charge assembling, which causes a large static electric energy.

The coexisting of three kinds of ordered structure in(PbxCa1−x)TiO3 is believed to be
caused by the fluctuation of effective ionic interactions. The CVM calculations suggest that
different kinds of ordered structure may appear when the values of the effective interactions
vary from one case to another. Defined as the averages of the formation energies over
all atomic configurations, the effective interactions vary as functions of the average atomic
volume [20, 21]. The Pb element in(PbCa)TiO3 has a complicated electronic structure,
so there may be a relatively large elastic energy caused by its change in atomic volume.
When the crystal is in a completely disordered state, the average atomic volume of every
local region varies due to the composition inhomogeneity. A possible way for an ordered
domain to grow is if its average atomic volume matches best to the original one of the
local region in the disordered state. The elastic energy is therefore made minimal. The
variation of the average atomic volume and the elastic energy lead to a fluctuation of the



Order–disorder phase transition in complex perovskites 1501

effective-interaction parameters, so different kinds of ordered structure result in different
regions. It can be seen that the order–disorder phase transition in complex perovskites is
influenced by many factors. The CVM calculations give the free energy in an ideal crystal.
The ordered structure actually formed in the real material system is the one that makes the
total energy of the system minimal.

5. Conclusion

The order–disorder phase transition in complex perovskites has been studied by the eight-
point CVM. The grand potentials of various ordered structures which have been observed
in experiments are calculated and compared with that of the disordered state. It has been
proved that the1

2{111}-, 1
2{110}- and 1

2{100}-type ordered structures will be stable under
the effective-interaction conditions(u, v) = (0, 0), (1, 0) and (1, 1) respectively. The
calculations of order parameters as functions of the effective-interaction parameters further
demonstrate that the nearest-neighbour interaction favours the formation of the1

2{111}-type
ordered structure, while the12{110}- and 1

2{100}-type ordered structures result from the
next-nearest- and third-neighbour interactions. The grand potentials of the1

2{111}- and
1
2{100}-type ordered structures reach minima at the compositionx = 0.5, whereas the grand
potential of the1

2{110}-type-I ordered structure reaches a minimum at aroundx = 0.25 and
x = 0.75. The ordered structure actually formed in real materials is determined from the
grand potential together with other factors, such as the static electric energy and the elastic
energy.
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